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ABSTRACT

The solution that is developed herein can be used to compute thermal
stresses and displacements in the moderately thick walls of appreciably
curved ogival radome shells whose material properties change with heat
intensity along the span and through the wall., No restriction is placed
on temperature dependent variations of the thermal strain expression.

A restriction imposed on the theory 1s that the wall material must
not be overstrained. Overstrain is any amoun beyond the elastic limit
in excess of allowable strain that accompanies a maximum stress equal to
the usable strength of the material as determined for the worst heating
condition in a given application.

Three examples of the computerized results are presented. The first
example deals with a 28.3" x 6.75" bicentric-ogive radome; the second,

with a thick-walled hemispherical radome; and the third, with a thin-walled
hemisphere. In these calculations, linear spanwise temperature distributions

are uvsed that were obtained from experimental and heat-transfer analyses
of a radome tested in a wind tunnel. Through the wall, over specified

layers, the thermal-strain function is approximated as being linecar with
temperature. However, the temperature varies as a third-order nonlinear
function through the thickness of the wall as found for the test radome.
It appears that errors due to the approximation amount to less than four

percent in general.

It was found that stresses in the bicentric-ogive radome were within
safe limits in regard to strengths of the wall material. Good agreement
was obtained between computed and experimentally determined stresses at
the one point, 1.75 inches behind the tip, where strains were measured.
Analyzed for comparison, the thick-walled hemispherical radome was over-
stressed, but the thin-walled hemisphere was sufficiently strong.

It is also concluded that additional information is needed on tem-
perature distributions, nosecap behavior, thermal stress maxima, and the
effects of radome-missile joints.
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1. INTRODUCTION

In his fam)jus treatise on elasticity, A. E. H. Love [1]1 discussed the
analysis of appreciably curved and moderately thick-walled shells. He then
proceeded with examples in which he made certain approximations that let him
neglect terms found to be unimportant within the range of consideration., Many
authors thereafter adopted Love's approximations and developed the modern

| thin-shell theory, (2, (3], (4], and [5], for example.

Today's requirements for heat-resistant structures of comparatively thicke-
walled shell construction have led to further investigation of the problem.
McDowell and Sternberg [6] examined spherical shells, and several wr t.vs
studicd cylindrical shi1ls: Tsao [7], Lee [10], Hoff and Madsen [1._,

Rivello [12) and [16], and Bijlaard, Dohrmann and Duke [18]. Conical shells
were analyzed by Lu and Chang [14] and Weiss [17]. Buckling effects, more-
over, were included in (11] and [14], and sandwich constructions were
discussed in [12] and [16].

Thermal stresses in beams wcre computed by Barrekette [8], and radome
materials for high temperature usage were compared by Weckesser, Hallendorff
and Suess [15]. The stiffness-matrix method was employed by Dailey [13] to
obtain numerical solutions.

In (9], F. Lane derived solutions for shells of revolution, and D. E.
Magnus and D. Eisen presented digital-computer programs for numerical
evaluations. Lane used variational calculus to minimize the strain energy
of a shell to obtain his results.

Numerical and theoretical analyses developed in the ersuing text
require that the radome wall material must not be overstrained. Overstrain
refers to a strain that exceeds the elastic limit at a concurrent temperature.
Reports [19] to [27], inclusive, were prepared as part of the overall
thermal-stress investigation.

Numerals in brackets denote references listed at the end of this report.
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III, NOMENCLATURE

e ——
——

Constants of integration

Wall stiffness factor, D = ER° /12(1-V®)
Young's modulus of elasticity, psi
Force; Function; Fahrenheit
Intercept height, inches

Wall moment of inertia, I = h®/12
Constants

An operator

Moment resultant, ippi
Normal-stress resultant, ppi
Function

Shear-stress resultant, ppi
Spatial radius, inches

A series or its sum

Temperature, °F

Wall-slope change, radians
Function

Variable

Geometric axis of radome

Series coeificients

Hall thickness of wall (c=h/2), inches
Normal strain, ipi

Function

Wall thickness, inches

Positive integer; 1,2,3,...

Constant

Length, inches

Positive integers; 1,2,3,...

Function; Pressure, psi

Auxiliary shear function, ppi

Planar radius, inches

A series or its sum

Displacement functions, inches
Thickness variable ratio, x = y/c
Thickness coordinate, inches
Coordinate along geometric axis, inches

Wall bending parameter, radians

Normal strain, ipi

Coordinate angle of rotation, degrees or radians
Poisson's ratio

Normal stress, psi

Shear stress, psi

Curvature change, radians per inch

Coordinate angle of azimuth, degrees or radians

The following symbols are used as subscripts:

a:
b:
c:
g

Anterior or outer surface of wall

Base of radome at the body of a missile
Central surface of wall

General
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i,m,n: Indices

o Origin or initial value (zero)
P Particular 1y
q: Referred to function q

8 Secondary or inner surface of wall --
t: Thermal or temperature

y In the y direction

z Cylindrical-coordinate directions .
v Spherical-coordinate directions

-

1V, THERMAL STRESS EXPRESSIONS

1, RADOME WALL STRESSES -

When the radome mainbody is an ogival segment, such as the one illustrated
in Figure la, meridian (0y;) and hoop (0g) stresses can be determined with a
computer program based on the following equations.

8 —i

' 9, = 0, = Ops Oy =0, = O (1)

In the foregoing expressions, O, represents a function having the dimens ons

of stress (psi) given by t

g, € Eet/(l-v) (2)

and 0, and o, were calculated from the equations written below.

S S T D Y

Rccl VyH(9; -vo, ) o = Rcce 3 yH (0, -voy) 3)
Y R~ (1-)R_ °’ b R (1-v®)rR
&' b&y N2 bgy =
Al A et () i

Dimensions h, H, R, and variables y, r, R are defined on Figure la, which shows
the wall profile of the radome. Symbol "I" denotes moment of inertia per unit .o
length of a section of the wall (I = h®/12). And v is Poisson's ratio while

! normal stress (Ni) and moment (Mi) resultants are described in the next article.

4
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Fig. 1b RADOME-WALL EL.LEMENT WITH STRESS RESULTANTS AND BENDING MOMENTS
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2, STRESS AND MOMENT RESULTANTS

Two normal stress resultants (N, and N,) appear in equations (4). By
definition, they are

N1=N¢+Nt¢, N= Ng + N g (5)

where all four of the right-hand terms are obtained from the following integrals.

tc +c
1o RC
= — = i (6)
c c
-C -C
+c +c
o RO
- _t = | —t !
Nw [ — dy, Neo f = dy @) ,
c c
J
-C -c
Furthermore, the shearing stress resultant (Figures 1lb and 2)
+c
rT
q = | X aqy ®)
¥ r,
-c

is closely related to the first two, equations (6), as discussed in Appendices
A, C, D, G, and References [24], [26], and [27].

Moments that bend the wall of the radome occur in equations (4) as M, and
M,. They are defined to be

M1=Mw+Mtw, M= M9+Mte (9) 1

where the four right-hand terms are calculated with integrals that are written
below. (Also, see Figure 1b).
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+c +c
ro Ro
= —l 3, = ——E
MW f r ydy, Hg R ydy (10)
' ,
-C -C
+c '3
[. rct Rct
Mey = J T ydy, Mg = R ydy (11)
' -C -C

The preceding functions are evaluated from relationships that are presented in
the appendices and in References [19] to {27], inclusive. Outer surfac. tem-
peratures are shown in Figure 3.

3. SOLUTIONS

(a) General Solutions = For numerical work, it is frequently expedient to
restrict the expansion interval of infinite series that are emploved in general
solutions. This was done in the example of Part VI-1l wherein three intervals
' span the length of the radome. The nosecap lies within 0 < y < §; = 64°19'23":

(Figure 2), and the mainbody (Figure 1) is composed of two segments (MBl and

l MB2) whose defining intervals are

1 64°19'23" = §, S § S = 73°44'23" (for MB1)

' 73°%44'23" = §y S § S g = 90° (for MB2)

where 90° coincides with the radome base at which point it is attached to the
cylindrical body of a missile.

For general solutions, infinite series are of the forms

® 2]
s = Z a Yn, S =Z na Yn-l (12)
m mn m mn

n=o0 n=0

with numerical results discussed in the appendices, and the variable Y is shown
below for MBl and MB2.
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sin ¢ - sin {,

¥ = Sin V- sin y, ’

, SV S (13)

sin § - sin ¥,

¥ = in Y- sin ¢, °’ fy 5§ <90° (14)

From both expressions (13) and (14), values are within -1 S Y < +] from ieft
to right ends of each interval. Subsequently (Appendix D), it is demonstrated

that the general solution is

4 4
r
Nyg = cos ¥ Z B £ (V) Ngg = Mg * i':' Z B F (V) (15)
m=1

m=1

where the B_ (m = 1,2,3,4) are constants of integration determined by boundary
conditions as explained in Appendix E.

The functions f, F, depend on sg, Sm being computed with

fm(W)m=1,2 =5, fm(v)m-3,4 =8 cos (16)

F_ (‘*’)m=1,2 = k;S_cos ¥, Fm(w)m_3’4 - kismcosaw -5 siny (17)

wherein ki represents k; in MBl and k, in MB2 as shown below in equations (18).

1 _ 1
s sin §,- sin § ’ ke = sin §, - sin §, (18)

The bending moments are calculated from changes in curvature of the wall
of the radome with orthogonal components expressed by

-1 dv -V cos ¥
Xy R_dy Xg = (19)

where V denotes change of slope of the radome wall induced by thermoelastic
effects. The moments are

11

Wi e
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M1= 'D(qu + Vxe)~ M= 'D(VX‘V + Xe) (20)

D = EI/(1-V?) = Eb® /12(1-V?) (21)

and the curvature changes are calculated from the next two equations.

4
_ cos ] y ' = _c ' )
Xog R /. B E (V). Xeg = Xeg * ® . BIF (}) (22)
m=1

The preceding functions, constants B, and Bn'v and computation of series
coefficients ay, ir. equations (12) by means of recurrence formulas are
described in greater detail in the appendices and in Reference [26].

(b) Particular Solutions - In general, particular solutions cannot
be obtained in closed form to compute stress and moment resultants in the
mainbody (Figure L). It is demonstrated in Appendix D, however, that
approximate formulas can be developed that describe the desired functions
within about one-half percent. The approximation functions are

= B, + e + it R Q = el N, = Qcot (23)
p B R, r_ tany ' ¥ o > ¥ v
" RcBe Rc r . Rccos ¥ -]
Nep =| B - ” cos § - 7= | esc Vv + ENEEANY (8,+ Bycos {) (24)
’ c 9l c I
' 1] 1
. ./%'- rc ) RC(B7+ BaCOS w) o V_cos i (25)
p R r tan { ’ 8 r
; c c c
/ r B; B/ 1 '_ R cos
= — o m—— — ' 1 ' ,
XWP =l R |cos ¥+ escy + —— " (B,+ B,' cos §) (26)
= C c c
| -
]
in which q [is an auxiliary shear function used to find the total shear (Q,)

by means off equation (23). Integration constants B, and Br'n are calculateg
in Appendix. D from temperature relationships, and they are fully developed
in Referend:e [24].
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V, THERMOELASTIC DISPLACEMENTS

1. WALL EXTENSION

In Appendix F, the wall-extension component (w) of displacement is
developed as

w=wsiny + Vg T ¥ (27)

t

where w; 1s a constant of integration (equalling w, in MBl and w, in MB2),
w, is a function that depends on the auxiliary shear function (qg, equations
(ﬂx» and (101), and w, depends on the temperature distribution as given by
equations (29), (30), and (31).

2. RADIAL DISPLACEMENT

After finding w from equation (27), the radial component of displacement
(u) is calculated with

u = r_csc W(% - WN )/Ek - w cot § (28)

where the coordinates are shown in Figures la and 1lb, and the other terms are
as defined previously. This relation for u is obtained in Appendix F.

VI, EXPERIMENTAL DATA AND HEAT TRANSFER ANALYSES

cea——

1, TEMPERATURE DATA

(a) Wall-Thickness Distributions - Available information on radome tem=-
perature distributions were analyzed and reported in Reference [22]. Tem-
perature distributions that are shown in Figure 4 were developed in the
referenced investigation together with References [20] and [21].

(b) Spanwise Distributions - The spanwise temperature distributions fcund
in Reference [22] along the outer, central, and inner surfaces of the test
radome are plotted in Figure 5. They are based on the general relationships
developed in Reference [20], and the coefficients are empirical.

(c) Temperature-Distribution Function - With but slight error, it was
found in Reference [22] that the approximate temperature distribution through-
out the wall of the radome was

T = Taf(x) (29)

13
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TEMPERATURE, T (°F)

TP -

1400

1200

1000

800

&00

400

200

Fig.5

DIMENSIONS ARE IN INCHES

l

EXAMPLE

{

f

2 1
T, = 1319 - (26.34-20.53cos i) siny

|

l EXPERIMENTAL, DAL TEST #4053 @4 SEC. [(Ref. 22) ]

) REGRESSION EQS. 4 TO 10, INCLUSIVE
/ /\ CONICAL-FLOW*/HEAT-TRANSFER CALC. (Ref.22) |
© TRANSONIC ZONE (or laminar-Flow/transitien)

]
(*Taylor-MeColl theory)

T

)

Y

A

.Ir_ T.=352-(13. W-i,?ﬂ:nlw:in%

AN

Z T, = lM-ﬂB.&?a‘;-eJﬁ;;:jéFEiin:\p

o=
o—

2

DISTANCE FROM TIP (inches)

15

223

25.3 28.3

EXTERIOR, CENTRAL, AND INTERIOR SURFACE SPANWISE TEMPERATURE
DISTRIBUTIONS FOR 28.3-INCH x 6.75<INCH VON KARMAN TEST RADOME
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where T = T(Y,y) is a separable function of § and x = y/c, with y being the
wall thickness variable and § the coordinate angle as in Figure la. For
thickness variation, we have

3
f(x) = T;q fnxn = 0.257 + 0.358 x + 0.305 x* + 0.084 x° (30)

(A
n=o

in which numerical values of coefficients (fn) are stated in the expanded
form on the right.

The exterior-surface temperature distribution is given by i

T, = T, () (31) Ja

which is shown in Figure 3 for the bicentric-ogive radome of the first example
in Part VIII. -

2. STRENGTH DATA

(a) Strain Measurements - Strains were measured along the inner surface
of the wall at 1.75 inches from the tip of the radome emplec:ed in the wind
tunnel tests reported in References [21) and [22]. No breakage was reported -
for test results used in analysis.

(b) Stress Results - Stresses were calculated from the strain measurements.
As a point of comparison, an experimentally determined meridian stress of
18,000 psi wus found at the inner wall surface at 1.75 inches from the tip .-
of the test radome. ‘

VII, NOSECAP AS A SPHERICAL SEGMENT

1, WALL STRESSES

Frequently, a radome nosecap is the spherical segment of a half-caliber
ogive pictured by Figure 2. In such cases, formulas (3) reduce to

o= R001 /R, = RO, /R (32) S |

%

and the other relations are unchanged. Radius R, is the principal radius of
curvature of the central surface, which is shown in Figure 2 also. « M
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2. STRESS AND MOMFNT RESULTANTS

The normal stress resultants (N, and N,) that appear in equations (4) are
given by

= N+ N N= Ng + N, (33)

where the right-hand terms are obtained from the following integrals.

+c +c
Ro Ro
Nv =J R_w. dy, Ne = //' R—e dy (34)
o o
- -c

+c
RO,
Nt = Nw = Nte = f dy (35)
«C

Also, the wall bending moments (M, and M;) that occur in equations (4)
are defined to be

M= Mo+ M, M= Mg M (36)

where the right-hand terms are computed with the integrals shown below.

+c
| [ RO Ro
8
* . M = Hydy, Mg =[ g ydy (37)
o o
-c

=
0
=
|
=
(a4
@
I

+c
Ro,
= R ydy (38)
[o]
=C
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The preceding functions are evaluated from relationships that are presented
in the appendices, and outer surface temperatures are shown in Figure 3.

3. SOLUTIONS

(a) General Solutions - For the nosecap, whose interval is shown in
Figure 2 as

0S§ S §=64°19'23"

the general solutions corresponding to series (12) are obtained with variable
Y replaced by l-cos §; e.g.,

2] [+]
- b (1 )" s = b (l-cos §)" 39)
s, = mn L 17€08 V) e nb (1-cos v (
n=o
n=o

and the nomal stress resultants are given by the following two equations.

4 4
= N .
N¢8 = cos A s Neg = N¢g + (l+cos ) T;ﬂ A S (40)
m=1 m=1

The bending moments are found with equations (20) using the following‘wall
curvature changes.

4 4
_cos y ' - (1+cos V) 1
Xeg R, AR Xwg Xeg y R, s ()
m=1 m=1

Again, the preceding functions, constants Ay and A&, and computation of series

coefficients are discussed further in the appendices.

(b) Particular Solutions - Particular solutions applicable to the nosecap

depend on temperature functions (35) and (38) that vary with cos § in the
examples of Part VIII. These snlutions are written below in closed form.

18
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N, =N, = A cos = =-A'cos 42
yp = Nop T Aoc0% ¥ Xyp = Xep ~Aoc08 ¥ &2)
r
They are equal in pairs, and A, and A are coastants that are evaluated from
temperature data in Part VI and in the appenciices.
4, DISPLACEMENTS
(a) Wall Extension - For the nosecap of Figure 2, equation (27) reduces to
w=wsin § - (1+V)ROQ¢/Eh (43)
where QW is defined by integral (8) and computed in Reference [27].
(b) Radial Displacement - The radial component of displacement (u) 1s
obtained from equations (28) and (43) as
R ]
u= o [(Na- VN ) + (1 + v)N¢ J- wcos ] (44)
where the coordinates are shown in Figure 2, and the other terms are given in
the list of nomenclature. The foregoing relations for u and w are also
developed in Appendix G.
VIII, NUMERICAL EXAMPLES
1. BICENTRIC-OGIVE RADOME

ga) Thermal Stresses - Based on stress equations presented in the preceding
text and the appendices, a computer program was set up for stress analysis of
the bicentric-ogive radome described in Reference [23].

The computed stresses were obtained for the temperature distribution given
by equations (29) and (30) using the outer-surface straight-line spanwise
temperature distribution (Ta) shown in Figure 3 along the mainbody as written
below.

EN= 589 + 705 cos ¥ (45)
Along the nosecap, the temperatures were represented by
¢ T, = 50 + 1269 cos (46)
. 19
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which approximates the points plotted near the left side of Figure 3 between
z = 28" and 32".

Computerized thermal stresses are listed in Tables 1 and 2 and plotted
on Figure 6, which follow immediately.

b) Displ - The thermoelastic displacements were computed with
xquations (27) and (28) for the mainbody and (43) and (44) for the nosecap.
‘fhe numerical results are tabulated in Table 3 and illustrated in Figure 7.

2, _RADOME BASE CONNECTIONS

Four l\inds of attachment of a radome base are symbolically illustrated
in Figure 8. A stiff connection is indicated by 8a while 8b is flexible.,
The attachments represented by 8c and 8d are intermr.diate between the stiff
and flexible connections diagrammed in 8a and 8b.

3. THICK-WALLED HEMISPHERICAL RADQME

For purposes of comparison, a thick-walled (Ry/h = 1.056) hemispherical
radome was analyzed using the temperature functions given by equations (29)
to (32), inclusive. Stress values from the computer program are reported
in Tables 4 and 5 and plotted on Figure 9. Components of displacement are
listed in Table 6 and shown on Figure 10.

4, THIN-WALLED HEMISPHERICAL RADOME

In the third example, stresses were calculated for the thin-walled
(R_/h = 26.5) hemispherical radome sketched on Figure 1l. For comparison
wigh examples one and two, the same temperature distributions were used.
They are defined by equations (29) to (32), inclusive.

The thermal-stress values are presented in Tables 7 and 8 and shown
on Figure 11. The comj ited thermoelastic displacements are listed in Table
9 and plotted on Figure 12.

IX, Di3CUSSION

1. NUMERICAL EXAMPLES

(a) First Example - The thermal stresses and displacements that are
presented in Tables 1, 2, and 3 for the bicentric-ogive radome are illustrated
in Figures 6 and 7. They were computed with v = 0.244 and E = 16,400,000
psi as mean values for Pyroceram 9606 as described in Appendix A-4 and
Reference [[19]. Also, the straight-line spanwise temperature distributions
given by equations (45) and (46) were employed in the computations. Thickness
distributions found in Reference [22] and depicted in Figure 4 are defined
by equations (29) and (30).

20
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Table 1. Meridian Stress, c*, psi (Figure A)

Coordinate Angle, {, Deprees

% 0 30 64°19'23" 68°31'S6" 73°44'23" 81°53'25" 90 i
+1.00 -33,580 -32,910 -23,302 -29,425 ~-28,615 -25,121  -29,448
+0.75 -16,927 16,769 -11,601 -18,304 -18,124 -16,123  -19,995
+ .50 - 6,470 - 6,503 - 2,944 - 9,885 - 9,903 - 8,695 -11,398
+ .25 4+ 3,699 + 3,493 + 5,621 -~ 1,552 - 1,762 - 1,338 - 2,860
0 +11,459 +11,104 +12,038 + 4,639 + 4,245 + 3,898 + 3,571

- .25 416,706 416,299  +16,964  + 9,401  + 8,924  + 7,971 + 9,009

- .50 +19,010 +18,634 +19,718 +12,075 +11,570 +10,098  +12,593

- .75 +18,457 +18,239 +20,997 +13,334 +12,900 +11,075  +15,193

-1,00 +15,377 _+15.465 +21,306 +13,676 +13,380 +11,305 +17,157
Table 2. Hoop Stress, Og» Psi (Figure 6)

Coordingte Angle, y, Degrees

% 0 30 64°19'23" 68°31'56" 73°4'23" 81°53'25" 90
+1,00 -33,580 -32,899  -53,818 -30,254  -28,901  -25,445 =31,846
+0.75 -16,927 -16,784  -42,117 -19,022  -18,494  -16,397 -23,715
+ .50 - 6,470 - 6,548  =33,460 -10,905  -10,356 - 8,918 -16,441
+ .35 4+ 3,695 + 3,411  -24,895 - 2,062 -2,298 - 1,509 - 9,227

0 411,459 +10,976  -18,479  + 4,268  + 3,627  + 3,779  + 4,122
- .25 +16,706 +16,113  -13,572  + 9,153  + 8,225 + 7,905 - 11
- .50 +19,010 +18,372  -10,798  +11,953  +10,790  +10,086 + 2,245
-1,00 415,377 416,949 _ - 9.2]10  +13.818 412,441  +11,399 + 4,149

Table 3. Thermoelastic Displacements (Figure 7)
rC ZC
(Deg-min-sec) (in) (in) (Unx1®) (inx 10) (Inx10*) (in x 10
0 0 28,175 23.6411 O 0 23.6411
30 0.132 28,060 20.4585 -11.6288 +0.1584  23.5319
64-19-23 0.238 28.025  9.8718 -20.9448 <-0.1785  23.1540 '
66-20-21 1.188  25.957  9.4295 -19.3686 +0.8638  21.5247
68-31-56 2.138 23.671  8.6435 -17.8434 1.5136  19.7688
70-57-49 3.088 21.096  7.8290 -16.2209 2.1101  17.8874
73-44-23 4,038 18.110  6.8369 -14.4297 2.5231 15.7669
75-55-48 4.685 15.724  6.3032 -13.0757 2.9353  14.2158
78-31-17 5.331 12.871  5.5926 -11.5193 3.1884  12.4018
81-53-25 5.978  9.124  4.7401 - 9.5873  3.3403 10.1601
90 6,625 0 0 0 0 0
21
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Table 4. Meridian Stress, 0', psi (Figure 9),

ety

y Coordinate Angle, 4, Degrees

< 0 15 3o 45 60 15 90
+1.00 -33,878 -34,194 -35,075  -36,980 -40,348 =4>,7/57 - 33,049
+0.75 -18,333 -18,775 -20,166 -22,687 -26,600 -32,216 - 39,890
+ .50 - 8,954 - 9,369 -10,633 -12,804 -15,958 -20,177 - 25,591
+ .25 - 58 - 406 - 1,421 - 3,017 - 5,053 - 7,39 - 9,776

0 + 6,165 + 5,936 + 5,336 + 4,619 + 4,187 + 4,527 + 6,068
- .25 4+ 9,542 + 9,50 + 9,692 410,452 412,524 +16,753 + 23,917
- .50 4+ 9,454 + 9,803 411,091 +14,026 +19,692 +29,382  + 44,302
- .75 + 5,697 + 6,591 + 9,632 +15,855 +26,844 +44,479  + 70,516
-1.00 - 1,983 =~ 257 + 5,446 416,630 435,588 465,032 +107,500

Table 5. Hoop Stress, Jg, Psi (Figure 9).

Y Coordinate Angle, §, Degrees

c__ 0 15 30 45 60 13 90
F1.00 -33,8/8 -%,248 -35,326 -36,957 ~-38,732 -39,68Z -37,800
+0.75 -18,333 -18,942 -20,705 -23,394 -26,483 -28,893 -28,56¢
+ .50 - 6,954 - 9,615 -11,516 -14,382 -17,625 -20,133  -19,904
+ .25 - 58 - 749 - 2,723 - 5,650 - 8,882 -11,277 ~10,915
0 + 6,165 + 5,473 + 3,516 + 683 - 2,315 - 4,315 - 3,513
- .25 +9,52 +8,924 + 7,216 + 4,860 + 2,630 + 1,679 + 3,625
- .50 + 9,456 + 8,987 + 7,755 + 6,267 + 5,354 + 6,143 + 9,982
- .75 + 5,697 + 5,503 + 5,120 + 5,132 + 6,432 410,076 +17,014
-1.00 - 1,983 - 1,741 - 770  + 1,611 + 6,369  +14,447 426,012

Table 6. Thermoelastic Displacements (Figure 10).

] u w Uy w,
(Deg .) (in, x 10* (in. x 10*)  (in. x 10%) (in. x 10*)
0 4,798 . 0_ 0 4,798

15 4,540 -0.431 0.759 4,496
30 3.806 - .762 1.243 3.677
45 2.722 - 907 1.283 2,566
60 1.502 - .814 0.894 1.456
75 0.457 - .483 0.317 0.585
90 0 0 0 0
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Table 7. Meridian Stress, OJL’ psi (Figure 11),
Y Courdinate Angle, §, Degrees
== Q 15 30 45 60 15 90
+1.00 -41,856 -41,197 -39,246 ~-36,281 -32,959 ~24,851 -6,219
+0,75 -24,882 -24,538  -23,515 -21,997 -20,422 -15,375 -2,514
+ .50 ~13,809 -13,608 ~13,0)1 -12,136 -11,263 - 8,069 + 295
+ .25 -2,869 -2,809 -2,630 -2,388 - 2,200 - 848 +3,006
0 + 5,870 + 5,793 + 5,564 + 5,188 4+ 4,711 4+ 4,235 42,569
- .25 412,426 +12,251 411,732 +10,928 +10,035 + 3,009 +3,099
- .50 +16,489 416,239 +15,494 +14,362 +13,186 + 9,757 + 133
- .75 +18,388 +18,103 +17,249 +15,978 414,765 410,207  -2,657
-1.00 +18,886 +18,591 +17,705 +16,416 +15,326 + 9,816 -6,727
Table 8. Hoop Stress, Oe psi (Figure 11),
Y Coordinate Angle, {, Degrees
__C___L 0 15 30 45 60 75 90
+1.00 -41,856 -41,197 -39,270 -36,308 ~-32,246 -25,066 ~-28,900
+0.75 -24,882 -24,537 -23,535 -22,035 -19,830 -15,077 -22,1¢0
+ .50 =-13,809 -13,607 -13,025 -12,186 -10,792 - 7,253 -16,341
+ .25 - 2,869 - 2,807 - 2,640 - 2,449 - 1,850 <+ 491 -10,562
0 + 5,870 + 5,795 + 5,558 + 5,115 + 4,938 + 6,102 - 6,901
- .25 412,426 +12,254 411,731 +10,844 410,137 410,409 - 4,245
- .50 416,489 416,242 415,498  +14,266 +13,163 +12,694 - 3,454
- .75 +16,489 +16,242 +15,498  +14,266 +13,163 +12,694 - 3,659
* -1,00 +18,886 +18,596 +17,719 +16,296 +15,049  +13,845 - 4,511
Table 9. Them@gtic Displacements (Figure 12).
u w Ur W,
(in. x 10°) (in. x 16*) (in. x 10° (in. x 16°)
0 7.694 0 0 7.694
15 +7.539 -0.107 +1.941 7.285
30 +7.078 - 209 +3.521 6.140
45 +6.314 - .245 +4 447 4,482
60 +5.485 - .278 +4.736 2.767
75 +5.105 -1.714 +4.887 1.487
90 -1.123 0 -1.123 0
28
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In all of the tables and figures, negative values denote compressive
stresses and positive values are tensile stresses. Component u (Figure 8)
of displacerent is positive radially outward along the R-axis, and w is
positive with increasing §y. For the rectangular components of displace-
ment, w, is positive in the positive direction of the Z-axis, and u, is
positive in the direction of increasing r which rotates about the Z-axis
as located by the coordinate angle 8.

As shown on Figures 6 and 7 the bicentric-ogive radome is fixed at
the base. Various kinds of radome-missile attachments with regard to
joint stiffness or flexibility are illustrated in symbolic form on Figure
8'

From the nunerical results, it is seen that the stresses generally
decrease from the tip to the base of the radome. The maximum tensile
hoop stress of 19,010 psi at the tip of the nosecap is less than the
allowable material strength of 35,000 psi. In the mainbody, the meridian
stress along the inner surface of the wall decreased from +21,310 psi at
64°19'23" to +13,680 psi at 68°31'56". This finding is consistent with
the 18,000 psi calculated from measured strains between these two interior
points as referred to in Part VI-2b on strength data.

() _Second Example - For the thick-walled hemispherical radome in
this example, the base attachment is shown by Detail "a'" of Figure 8,
and the dimensions are given in Figures 9 and 10,

From the numerical results in Tables 4 and 5, it is seen that the
stresses increase from the tip to the base of the radome while the converse
occurred in the previous example. These stresses are excessive and would
crack a real radome. Distributions of these thermal stresses are plotted
in Figure 9 for comparison only. And the displaced position of the radome
wall caused by aerodynamic heating is sketched in Figure 10,

(c) Third Example - The base connection is represented by Detail "b'"
of Figure 8 for the thin-walled hemispherical radome in this example, and
the dimensions are shown in Figures 11 and 12. Also, the radome wall has
the same thickness and its central-surface radius is the same as the base
radius of the bicentric-ogive radome in the first example.

From the tabulated numerical results (Tables 7 and 8 and Figure 11),
one observes that the maximum stresses occur at the tip. There is 18,890
psi tension along the inner surface and 41,860 psi compression along the
outer surface of the wall at the tip of the radome. Meridian tensile
stress maxima decrease from tip to base along the span and fall inside
the wall beyond 45°, while the compressive maxima remain along the wall's
outer surface and decrease along the span to 6220 psi at the base.

Again, as shown here in Figure 12, the wall expands outward over most
of the length, but is induced by the spanwise heating to move inward at
the base. With the stiff base attachments empioyed in examples one
(Figure 7) and two (Figure 10), such inward movement is suppressed.
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20 SUMMARY

(a) General Remarks - With fixed ends, examples one and two, displace-
ment and wall-slope change are prevented at the base of a radome; i.e., the
boundary conditions imposed by the radome-missile joint are: V, = up = w, =
0, which represent conditions that are more severe than occur in actual
structures. A missile body expands and contracts with changing temperatures,
so up would not vanish.

The hicentric-ogive radome wall material was found to sustain the thermal
stresses by both test and theory. Of the two hemispherical radomes that
were analyzed for purposes of comparison, the thick~walled radome is over=-
stressed, but stresses in the thin-walled hemisphere lie within safe limits.

(b)__Recommendations - It appears that the methods of analysis of
thermal stresses and displacements in ogival radomes under aerodynamic
heating that are presented herein are satisfactory for numerical evaluations.
Further study of the problem is needed, however, to provide answers to un-
resolved questions.

It is therefore recommended that the investigations be continued to
obtain information on nose temperatures, stress maxima, and the effect of
different kinds of radome-missile connections.

X._ CONCLUSIONS

Based on the reported investigations, it is concluded that:

(1) The methods of analysis are satisfactory for the cal ilation of thermal
stress and displacement in ogival radomes.

(2) Additional information is required on temperature distributions.

(3) Further studies are necessary on nosecap behavior and thermal stress
maxima.

(4) Further investigation of radome-missile joint effects is desirable.

APPENDIX A: THEORY

1. EQUILIBRIUM REQUIREMENTS

(a) Stress Equations of Equilibrium - The volume element in Figure 1
is oriented with respect to meridian lines (located from the center of
curvature by radius R) and the angle {, which measures the inclination of -
R. The third coordinate is 8, which is the rotational angle about the
geometric Z-axis for the ogival body of revolution. They are often referred
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to as the natural ogive coordinates. Orthogonal coordinate systems (R, 8, y)
and (r, 8, z) are shown in Figure la.

For axially symmetric bodies and heat distributions, the partial
differential equations of equilibrium for a volume element follow immediately.

(xR0 ) A(rT ) a(rR?ilw) 3(rRo )
dy

yu© o -
+ i rcw + Rdesin Vs > + Y = K ¢ 08 ¥ 47)

Equations (47) are derived from £ F_, = 0 and T F¢ = 0, respectively. Owing to
geometrical and thermal symmetry, there are no changes in the © direction
and Tye and TWe are zero as well as T Fe =0,

(b) _Stress and Moment Resultants - When equations (47) are integrated

over the wall thickness, the equations of equilibrium are obtainad in terms
of the stress and moment resultants of integrals (6), (8), and (10).

d(r Q)
—C v -
p (rcNw + R_Ngsin §) (raRapa + rSRspsy) (48)
d(r N )
—Cc V¥ g - =
m (RcNecos ¥ chw) (raRapa¢ rsRsPs¢) (49)
d(rcM )
3y = Rc(MGCOS ¥+ chv) + c(rsRspsw - raRapaw) (50)
In the foregoing relaticns, p_, and p_, are the radial and tangential components
of pressure at the outer surface of tgx

radome; and Pg and pg at the inner

surface. These pressures are equated to zero in a thermcL-strXss problem.
For the investigation of temperature stresses, therefore, the resultant

stress and moment conditions that ensure equilibrium are expressed as follows.

d(r Q, /R sin {) d(r M)
NS ot Ny m SRR, s Mgs ytrg  GD)

These expressions hold for both thick and thin-walled ogive shells from the
inner apex to attachment points at the missile body, but not within the
attachment region owing to restraints set up by the connections. In any case,
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however, the body-joint problem requires further analysis and can often be
treated by reintroducing the surface pressures as derived in equations (48)
to (50), inclusive.

2. STRAIN EXPRESSIONS

(a) Thermal Strain - For Pyroceram 9606, the thermal-strain function
(¢,.) was developed from test data in Reference [19]. From these results
together with temperature distributions reported in Reterence [22] for
wind tunnel testing of a Von Karman radome, the function is defined as

follows.
€, = (-241.2 + 3.445T) x 10-°, 70° < T < 400°F (52)
= (-119.1 + 2.958T) x 10-°, 200° < T < 600°F (53)
= (+190.3 + 2.221T) x 10-°, 300° < T < 1400°F (54)

Temperature (T) is given by equations (29) to (31), inclusive.

Inspection of the distribution of temperature defined throughout the radome
by these equations and Figure 3 revealed that equation (52) satisfactorily
describes the temperature in the inside half of the wall (-1 < x < 0) along
the entire span; equation (53) defines T over the full span in the quarter
thickness above the wall centerline (0 < x < +0.5); and (54) serves the same
purpose in the outer quarter of the wall thickness (+0.5 € x £ +1). This
arrangement expedites the calculation of temperature functions, integrals (7)
and (1l1), and the stress equation (2).

The strains computed with equation (52) agree with the measured data,
Reference [19], within =1 to +3 percent. Those calculated from equation (53)
correspond to the measurements within five percent; and the ones found with
(54) agree within seven percent in the low part of the temperature range, which
is seldom used, and deviations in the upper half of the range lie between
approximately -2 and +4 percent.

(b) Actual Strain - Components of strain for elastic behavior were
thoroughly discussed by Love [1] and other authors [2], [3], [4], and [5].
We have

ew = (ewc - yxw)RC/R, €y = (eec - yxe)rc/r (55)
€ = - [ u + clJ S usin §{ + w cos (56)
Ve R L day |’ Bc r
34
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L[ du_ L Loy _Ycosy
V RC [ dw w ]l X‘U RC dw ) Xe rc (57)

where equations (55) define the normal-strain components at any point in the
wall of the radome, equations (56) give these strains at the central surface,
and (57) shows the change (V) of the slope of the wall together with curvature
changes. General solutions for the latter functions appear as equations (22);
and particular solutions, as equations (25) and (26).

(c) Elastic Strain - As the result of thermal strain due to temperature
change plus elastic strain produced by constraints against thermal expansion
or contraction, we have

=€, -~ € (58)

where ey, eg are the components of elastic strain in the wall of the heated
radome. And the other terms are given by equations (55) to (57), inclusive.

3. MECHANICAL PROPERTIES

(a) Young's Modulus - Dependence on temperature of the mechanical

properties of Pyroceram 9606 was examined in Reference [19]. 1In the pre-
sent numerical examples, an average value of E was employed and is written
below.

E=E_ = 16,400,000 psi; 70° < T < 1400°F (59)

Values of E cver the above temperature range, which includes all temperatures
in the examples, agree within four percent of the quoted average.

(b) Poisson's Ratio - As pointed out in Reference [19], Poisson's ratio
(v) is nearly constant for the radome-wall material. For the specified
temperature range, its mean value is

Q2 T 5 G.244, 70° < T < 1400°F (60)

and the largest differences between tnis mean value and the test data amount
to ¥2.5 percent.

4. STRESS STRAIN RELATIONS

(a) Hooke's Law - The previously discussed wall stresses and strains
are related by means of Hooke's law; e.g.,
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Ee =0 = VO Ee, = 0, - VO 61)

L 6’

from which the stresses are customarily expressed in the following manner.

o= E'(ew + veg), Oy = E'(ve\h + eg), E' = E/(1 - V°) (62)

As presented in the next two articles, the preceding relationships let us
express the central-surface strains and curvature changes in terms of the
stress and moment resultants,

(b) Nommal-Stress Resultants - When E and v are represented by their
constant mean values, equations (59) and (60) respectively, the integrals
(5), (6), and (7) together with equations (55) to (58) and (62) lead to
the following expressions for N, and N,.

N, = E'h(e“,C +vey ), N,= E'h(ve €oc) (63)

g ©

Second and higher order effects are neglected in this calculation of N, and

N,’2 in terms of the central~-surface strain components.

(c) Bending Moments - Equations (9), (10), and (11) are used with (55)
to (61), inclusive, to obtain |

M= -D(x, + vxe), M= -D(wa + xe) (64)

y

SR y—

wherein the second-order effects are again neglected, D is the wall flexural
stiffness factor stated by equation (21), and the curvature-change components
are given by equations (22) and (57).

o e —

APPENDIX B: TEMPERATURE FUNCTIONS

1. NORMAL-STRESS TEMPERATURE FUNCTIONS

Functions that depend on the temperature distribution and have the
dimensions of a ncrmal-stress resultant are defined by equations (7) and
can be expressed in the forms written below.

Nte = K+ K cos ¥, NW = Nte + (K,+ K, cos q;)Rc/rC (65)

(o
PR
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When equations (2), (29), (30), (31), (52), (53), (54), (59), and (60) are
substituted into (7) and integrated, the K; are found to have the following
values.

K, = 4.648Eh/(1-v) x 10*, K = 6.792Eh/(l-v) x 1¢* (66)
K= 4.393Eh/(1-v) x 10, K = 3.420Eh/(1-v) x 10 (67)

The radii r, and R, that occur in equation (65) are illustrated in Figure 1
ﬁnd]defined by equations shown on the figure. They are evaluated in Reference
251,

2. BENDING -MOMENT TEMPERATURE FUNCTIONS

Functions that depend on the temperatur. distribution and have the
dimensions of a bending-moment resultant are cefined by equations (11) and
can be expressed in the forms written below.

Mg = Jot Jycos §, Mt“J =M.+ (Jp+ Jycos YR /1, (68)

When equations (2), (29), (30), (31), (52), (53), (54), (5¢,, and (60) are
substituted into (11) and integrated, the J; are found to have the following
values.

J,= 1.269Eh®/(1-v) x 10%, J, = 0.989Eh?/(1-v) x 10% (69)
J,= 1.704ER% /(1=v) x 10",  J = 2.195EW®/(1-v) x 107 (70)

One can see that the K, have the dimensions of pounds per inch (ppi); and the
E}, of inch-pounds per inch (ippi). Again the above are evaluated in Reference
il

APPENDIX C: DIFFERENTIAL EQUATIONS FOR SHEAR AND SLOPE FUNCTIONS

1. AUXILIARY SHEAR FUNCTION

To find solutions for the total shear (QW)’ equation (8), the auxiliary
shear function (q) is introduced such that
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ch cos dq
q = rCQ‘l‘/RC sin ¥, N\h = ——;;— 3 Ne -—'a'w (71)

and, by solving equations (63), the central-surface normal strains are obtained
in terms of q.

From equations (56) and (57), V is found in terms of the central-surface
normal strains.

) d(r e, )
V= c;c y §¢BC . e¢CCOt ¥ (72)
f c

And with equations (5), (63), and (71) put into (72), the following ordinary
differential equation is obtained

2 - - gesc yd 1
(L°+ v)q = EhV + (NE the)cot ¥ [ rc(Nte thw)] (73)

+ ¥ R, dy
The operator L° is defined as follows:
r csc § 2 qR cos
2, =S~ 4d4g dq ‘¢~
L°q R 4 + cot § ay "~ T _tanm y (74)

and, in general, the solutions of equation (73) are obtained as infinite
series for q and V, which are exemplified by equations (12) and obtained ﬂ

T

in Reference [26]. !

2. WALL-SLOPE CHANGE

Relationships similar to the foregoing are derived for V by substitution
of equations (11), (22), and (23) into (51). The result is

.
"M _,cot § d(r M_ )

12- V@E) = (8°+ V) E—— - g . 2 S‘l't‘b 1 (75)
= c c -

where 1° is given by equation (74), q by (71), and the temperature moments
by (11) and (68)., The wall-bending parameter (B8) is calculated with

B = v+ 12(1-\)2)(Rc/h)2 (76)
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which is developed from the expression EhRg/D, where D is given by equation
(21). The general solutions of equation (75) are given in Reference [26].

3, SPECIFIC RESULTS

When specific temperature functions defined by equations (65) and (68)
are put into equations (73) and (75), the results are as follows.,

(L?+ vj(q + K) = EhV + (1-V)K r /R, + KR /r_tan § an
4 2
(L%- v)(EhV) = (B*+ V¥) (3 r /R + L /R, - q) (78)
Particular solutinns of (77) and (78) are necessitated by the presence of

constants Kj, J; and general solutions when these constants are absent.
These solutions are developed in Reference [24].

APPENDIX D: SOLUTION OF EQUATIONS

1.  MAINBODY

(a) General Solutions - To find the gepneral solutions of equations (77)
and (78), one observes that

@+ e")qg =0, @+ s")vg =0 (79)

where subscript ''g" denotes that the solutions are general. They are found

as
4 4
r r Y—ﬂ
= —C Kl = _S 3 ' 1
qg R Z Bmfm(’l) ; Vg R I Bmfm(\r) (80)
[ [o} A
m=1 m=1

where series fm (m =1, 2, 3, 4) are given by equations (12) and (16).

The series coefficients (amn) are computed from recurrence formulas as
explained in Reference [26], and constants Bm and Bé are related as follows.

39
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2 2 it

B = (VB + 8°B)/Eh,  BJ= (VB,- B°B )/Eh (81) -

- i,

And similar relations hold for m = 3 and 4. U

(b) Particular Solutions - With reference to equations (77) and (78), . J

only the terms involving r_ as the only variable can be solved in closed form.
These forms are asssociated with K; and J, . We have

(L%+ v)q, = BhV, + (1-9)K r /R (82) -

T

12 v)(ERV ) = (B*+ V?)(J,t /RZ - T (83 |

( )( p) (8 )3y x /R qp) (83) |

and the particular solutions are written below. * {

q, = B r /R, = -B, rC/Rc (84)
J, (=) + RK) AP+ REK)
R 'ﬁ: 3 (1+8)R 2 k = (1+8* )R Eh (85)

These solutions, equations (84), are included in equations (23) and (25).
For other terms (the ones that involve K,, X, , and J,), however, iufinite
expansions are required to satisfy the differential equations. In the

* current examples, approximation functions are used that meet the require-
ments with errors of one~half percent or less. The approximate solutions ’
are discussed in Reference [24]. ?

APPENDIX UNDARY CONDITIONS

1. GENERAL REQUIREMENTS

In general, one considers the requirements at the juncture of two
arbitrary segments of the mainbody, such as MBl and MB2 with the junction
at § = 73°44'23" in the first numerical example. Eight functions are
invoived: displacements u, w and slope change V; stress resultants Qg,
Ny, Ny; and moments » Mg. At any juncture (¢i) where there is wall
material and geometric continuity, all eight functional requirements can
be met by the following five equations.

20 ]
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wiy+) = wiy-1), V(+) = V(y;-) (86)
a(y;+) = q(y;-1), Ny (yy+) = No(yy-) (87)
X¢(¢1+) =%, (") (88)

From these, one constant w; in w({y;+) is detemined directly and four relations
for constants of integration B, are obtaired. The equations and evaluation of
the constants are discussed in Reference [26].

2. RADOME BASE

At the base of a radome, three equations are found according to the type
of attachment as illustrated in Figure 8. In all cases, axial relative dis-
placement between missile and radome vanishes, cor

w(90®) =w =0 (89)
and the constant L in w, is computed directly. Then for a fixed base, we
have
u(90°) = u = 0, v(90°) = Vb =0 (90)
and for a free base, the requirements are stated below. 1
q(90°) = q, = 0, Mw(90 ) = va =0 1)
With a hinged base, one uses ‘
u = o, va =0 (92)

and with a bearing~-supported base

Vv, =0 (93)

= 0, b

a4

where the relationship between q and QW is given in equation (71). P
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3. NOSECAP-MAINBODY JUNCTION

At |, = 64°19'23", which locates the interface between the nosecap and
MBl (Figure 2) in the bicentric-ogive radome of the first example, the
requirements for strain continuity lead to the following expressions,

Equations (94) and (96) produce satisfaction of

Q (4, +) =q (4 =), N (4 +) = N, (4 =) (97) -

i \

which also meet similar requirements imposed on Ny and u, since the constant

Wy in the nosecap formula for w is computed with the next equation.

Wl ) = w(t, -) (98)

The first of equations (95) satisfies the requirement on V, equation (86),
‘ and the second one fulfills a requirement that is similar to equation (88).

APPENDIX F: THERMOELASTIC DISPLACEMENTS

1. WALL EXTENS:ION

From equations (56) for the mainbody, we have

42

elllc(1"{1+) = e‘yc(%"), eec(\lll'*') = eec(l’Jl ') (94)
Xg Uy +) = Xg (') =), Roxy () = Rx, (=) (95) .
Sreli) FRX (7)) = 0, g (=) + RyXgl=) = 0 (96) "‘
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Y . ®oc _sin ¥ d(w esc ¢) N - VN, + r (OO, - N,)
Ve Rcsin ] R dy Eh Rth sin ¥

[

Ney = W T N - Neo)

= t‘h -+
Eh RCEh sin §
(r_ + VR sin §)
: qcot § _ __¢c c dq
N CReEE AT ) T_Eh R En sin y  d¢ (39)
which is integrated to secure equation (27). The integration constant in
equation (27) is wy, and functions Vg and w, are shown below.
(rc + chsin ¥)q
wq =W sin § - Fh sin § (100)
Wi = SN (N ,=VN_ )r_csc § + (W =N )R} i . (101}
t Eh té eyl e T t6 Tty cJ sin /
" q(2rc + R sin y)cos § dy
W= (102)
Eh r, sirfy

When the normal-stress temperature functions in equation (101) are given by

equations (65), L becomes

, VR
W =-Llé%:'m (K cos § + K ) +El£ (Kycos § + K;)
Rc sin § - .
¥ En sin g, {‘S.‘Aﬁ hosec §.) + KA, (103)
J
l-l + cos (¥+y ) K
e | A= An(R_/r_csc §) (104)

c cC i

hy=2n (csc § - cot §), A= ’C“'L r /R

where the ), are logarithmic expressions as indicated above. The trigonometric

sine of the central-surface apex is computed with

sin §_ = H/RC, H = Rc - T (105)
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and sec §. can then be readily obtained. Values of the K; are calculated
from equations (66) and (67). Functions W, integral (102}, can be computed .
with infinite series, but it is usually more convenient to find W by finite
summation.

2.  RADIAL DISPLACEMENT

To find u for the mainbody, wc again use the second of equations (56)
together with equation (27) for w. When €5¢ is obtained from equation (63), the
following result is found.

u = (Né- le)rC/Eh sin § - w cot § (106)

Equation (106) can be used throughout the ogival mainbody since § > O.

s s rTac. o

APPENDIX G: NOSECAP EXPRESSIONS

1. TEMPERATURE FUNCTIONS

(2) Normal-Stress Temperature Functions - When one uses outer-surface

temperature distributions that vary with cos { in the manner of equations (45) 1
and (46) for the nosecap, the normal-stress-resultant temperature function,
equation (35), can be expressed as follows.

S Nt*b = N.g = K+ Kcos § (107)

For the nosecap on the bicentric-ogive radome, surface temperatures were
given by equation (46), and

K'= -0.0612Eh/(1-v) x 10f, K'= 13.873Eh/(1-v) x 1¢* (1

which were employed in the first example.

For the hemispherical radomes, the surface temperatures were given by
equation (45), and

K'= 5.842Eh/(1-v) x 10*,  K/= 7.772Eh/(1-v) x 1¢ (109)

which were used in the second and third examples.
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(b) Bending-Moment Tempevature Functions - Since temperature functions
for the bending-moment resultant have the same general form as equation (107),
one can use

M =M = Mte = Jg +J cos y (110)

and, for the nosecap with surface temperatures from equation (46), the con-
stants are written below.

J) = 0.5195EW°/(1-v) x 10", J' = 2.830En°/(1-v) x 1¢* (111)

For the hemispherical radomes, the surface temperatures were given by
equation (45), and

Jy = 1.732E0°/(1-v) x 1¢*, 1! = 1.585EW?/(1-v) x 1¢* (112)

which were employed in the second and third numerical examples.

2. DIFFERENTIAL EQUATIONS FOR SHEAR AND SLOPE FUNCTIONS

(a) Total Shear - For hemispherical segments, such as the nosecap, equation
(73) reduces to

dN
I+ v)Q, = EhV - (1-v) —& (113)
( Q‘l’ (1-v) v
and equation (74) becomes
1°Q = &9 + cot q,ég - Q cot?| (114)
dy? dy ¥

which lead to general solutions of the kind indicated by equations (39) and
(40) that are more fully described in Reference [27].

(b) _Wall-Slope Change - For the nosecap, equation (75) reduces to

il dM_
(17- V() = -(5 + ) Q + -1--55 (115)

=

where L° is given by equation (114), Qy by (8) and the temperature moment by
(38) and (110). The general solutions are discussed in Reference [27].
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(c) _Specific Results - When the specific temperature functions defined
by equations (107) and (110) are put into equations (113) and (115), the
results are as follows.

(L% + v) Q, = EnV + (1-V)K/ sin y (116)
Jysin

R

(L2- v)(EhV) = (g5+ V°) - Q (117)

Particular solutions of these equations are necessitated by the presence of
constants K; and J{ and general solutions when these constants are absent.

3. _SOLUTION OF EQUATIONS

(a) General Solutions - To find general solutions of equations (116) and
(117), one observes that

(L*+ 83) Q =0, (*+ B3 v, =0 (118)

where subscript 'g'" denotes that the solutions are general. They are found to
be
4

4
i = '
Qg = sin Z{: Amam, Vg sin ¢ :E: Amam (119)
m=1

m=1

where the infinite series (s_) are indicated by the first of equations (39),
and they are developed in Re?erence [E2wil

(b) Particular Solutions - The terms associated with sin § in equations

(116) and (117) possess closed-form solutions. They are
QP = A sin ¢, Vp = -Aésin ¥ (120)

where constants 4 , AJ depend on K/, J,' as shown below.

r . - I (1-V*) I+ R K') e (1-9) (F+ F) (3)'+ R K')
o R a + sg)Ro ’ 0 (1+ B(SRO Eh

(121)

Numerical values of the foregoing constants were obtained with the aid of equations
(108), (109), (111), and (112) and used in the three example problems.
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4. BOUNDARY CONDITIONS

(a) Nosecap Requirements - The nosecap boundary conditions at its
juncture with the mainbody are discussed in Appendix E-~3 in conjunction with
equations (94) to (98), inclusive. However, owing to errors in the original
computer program not all of these conditions were met in the first numerical
example. The numerical results reported herein satisfy requir:cents that
meridian fiber stresses at the inner and outer surfaces of the wall are
equal between mainbody and nosecap, but there are discontinuities in some
of the terms that appear in equations (94) to (97), inclusive. Equation (98)
was exactly fulfilled however.

In consequence, the nosecap stresses must be regarded as approximate
rather than precise results. Furthermcre, they are believed to be reasonably
2o00d approximations,

(b) Base Connection Requirements - The base-connection boundary conditions
given by equations (89) to (93) were used iu comparison studies with hemi-
spherical radomes. They were completely satisfied in these studies. In
the second example in this report, conditions (90) were imposed; and in
the third example, conditions (91).

L 5. DISPLAC'
(a) 1sion ~ Extension (w) of the nosecap wall, which is
3" lustrated pure 8, is computed from equation (56) with r, = R, sin y;

i.e.,

- sin § d(w esc §)_ (L+ v) (N - N)
17 T2

ye Bc R dy Eh

Eh

= - (—1121 sin d{' ﬂ%;_g_u) (122)

Zrom which the following expression is obtained.
W= W sin § - (1+v)RoQ/Eh (123)

And v, is an arbitrary constant.

(b) Radial Displacement - Again using the central-surface hoop ctrain and
cquations (56) and (63), one has |

€. = (utwcot §)/R = (N,- VN )/Eh (124)

|
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which is solved to obtain the following expression for u.

u = (N,- VN )R /Eh - w cot § (125)

Since cot { becomes infinite at § = 0, it is desirable to substitute equation
(123) into (125) for numerical work., In this way, we arrive at the next
relationship for the radial displacement (u).

R
us=z [(Na- V) 4+ (1 + V) Nw}-wo cos § (126)

The preceding equation for u was reported earlier, equation (44), as being the
most suitable one for the computer program.
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